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basis by  using the formula  

n = C Q  
a = ~ 0On 

n=l (~ r)n 

where the  coefficients ~ for 0 = 90 ° are all t aken  
as zero except a~ = 0.311 and c~ = 0.014. Absolute 
values of a for other  values of 0 were derived from 
the values for 0 = 90 ° as calculated above and the 
relat ive values as t abu la ted  in the  International Tables. 
The final absorpt ion factor  A for spherical crystals 
was then  expressed relat ive to A = 100 for 0 = 90 ° 
as in the  cylindrical case. 

To use the  tables, calculate the value of/~r and  plot 
a graph of the  corresponding values of A in the tables 

against  the  angle 0. The vMue of A for any  angle can 
be read  with sufficient accuracy from this graph.  The 
table gives values of 100A; for instance, when 
r = 0-05 cm., /~ = 20.0 cm. -1, p r  = 1.0, a diffracted 
beam for which 0 = 22½ ° is reduced by  absorpt ion 
to 25.2% of wha t  it  would have  been had  no ab- 
sorption t aken  place. 
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The medium considered consists of molecules or other like particles (e.g. micelles) of which one 
direction, called the molecular axis, has a probability distribution D(~) as in a fibre, i.e. depending 
only on the angle e between the molecular axis and a direction fixed in space, the fibre axis. Random 
orientation of the molecules about their molecular axes and random distribution of their centres is 
assumed. The intensity distribution for X-ray diffraction by this medium is expressed in Fourier 
space in terms of the intensity distribution (Patterson transform) of the single molecule. Two 
examples are given, one of which contains as a special case the previously determined effect of 
finite linear gratings in random orientation. 

1. I n t r o d u c t i o n  

The ampli tude of coherent X - r a y  radiat ion scat tered 
in the direction of a vector k from a molecule with 
densi ty distr ibution O(x) referred to the  origin x = 0  
is given, if the  usual  constants  are omitted,  by  the  
Fourier  t rans form of the density,  

F(vl) = l ~(x) exp [--2~i(Tlx)]dVx, 

where TI = k - - k 0  is a vector  of reciprocal space, 
k 0 a vector  in the  direction of the  incident plane wave 
and k, k 0 are such t h a t  ]k] = ]ko] = ~-1, ~ being the 
wave-length of the  radiat ion.  

T h e  intensi ty  of the scat tered radiat ion is given by  

a ( n  ) = F ( n ) F * ( n ) ,  

which, being a function defined in reciprocal space, 
is called the  intensity function of the molecule. I t  is 
the  Fourier  t ransform of the Pat terson-folded densi ty 
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of the molecule, 

P ( x )  = ~ * ( s ) Q ( s + x ) d V , .  
t) 

(1) 

I f  the  molecule were to t ake  up another  orientation 
in space, the  intensi ty  function would have  a similar 
change of orientat ion in reciprocal space. Hence the  
resul tant  ampli tude from an assemblage of N variously 
or ientated similar molecules which are shifted f rom 
the origin by  random vectors xj is 

3g 

~(TI) - - ~ '  Fj(TI)exp [ - -2s i01xs) ] ,  
j=l  

where Fj(TI) denotes the ampl i tude funct ion F(II) 
or ientated in reciprocal space to correspond to the  
orientat ion of the  j t h  molecule. The intensi ty  of the  
radiat ion is 

3' 

(~(n) =~.,~ F~(TI)F*(n) 
i=l  

+ ~Y'Z F~(n)F*(~) exp [--2si(n. xj--xk)]. 
i~ek  
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Since the vectors xj are random, in general the cross 
terms of this summation may be neglected (James, 
1948, p. 465), so that  the resultant effect is given by 
the superposition of the suitably orientated molecular 
intensity functions Gj(T1)= F~(T1).F~(T1). I t  is true, 
however, that  the impenetrability of the molecules 
produces certain restrictions on their positions and 
that  the resulting diffraction halo may be observable. 
This refinement will not be considered here, since the 
main aim at present is to use the Patterson-folded 
density of a single molecule to express the intensity, 
at every point of reciprocal space, of the radiation 
scattered from a random assemblage such as this in 
which the molecules possess a partial alignment along 
a fixed direction. The diffraction effects of this 
assemblage (halos and part-halos) can then be found 
by constructing the sphere of reflexion appropriate 
to the wave length and the direction of the incident 
beam. 

2. The co-ordinate sys tems  and a l ignment  

In order to describe the orientation of a molecule of 
the assemblage it is necessary to define a fixed direction 
in space, called the fibre axis, which is taken as the 
polar axis of a co-ordinate system (r, 0, ~). Each 
molecule of the system has a molecular axis defined 
by drawing a straight line through the same points 
in each molecule; the orientation of such an axis in 
space is given by the angles (~, fl) referred to the 
fibre-axis co-ordinate system. 

The molecular axis is next considered as the pole 
of a co-ordinate system (rl, 01, ~1) in which ~1 = 0 
is the plane common to the fibre axis and the mole- 
cular axis. 

In each of the molecules there is defined a molecular 
plane q~l = 7z passing through the same point in each 
molecule and containing the molecular axis. The angle 
~'1 defines the orientation of the molecule about its 
own axis. 

Finally, the molecular plane is taken as the plane 
q~. = 0 of a co-ordinate system (r~, 03, 9~) fixed in the 
molecule, the molecular axis being the polar axis, 
and the origin being similarly placed in each molecule. 
Since the molecules are similar, the electron density 
~(rg., 09, ~9~) is the same function for each molecule. 

The origins of these three systems are coincident 
and thus, for the same point, r = r 1 = rg. 

In the kind of partially aligned random assemblages 
under consideration, it is assumed that  the molecules 
have random orientation about their own axis, and 
that  these axes lie with a probability D(~) at an angle 
c~ to the fibre axis. D(~) is independent of ~, which 
means that  the assemblage has a statistical axial 
symmetry about the fibre axis. The precise definition 
of D(a) is that  the fractional number of molecules 
having the molecular axis lying at an angle between 
~, ~ + d ~  to the fibre axis is 

dN(~) = D(~) sin a d a ,  

and the function is normalized so that  

f0D(a).sin a . d a  = l o 

For reasons which become apparent later, D(a) is 
expanded as 

CO 

D(a) = ~ D~P~ (cos a ) ,  (2) 
where ~=0 

D~ -- 2 v + l  I~D(a)P~ (cos a) sin ~. da . 
2 0 

The form of D(~), and therefore the values of D}s, 
are determined by the extent and the nature of the 
alignment present. 

Partial alignment of this type occurs in fibres, in 
high-polymers, and in the cases of molecules having 
molecular dipoles if they are subjected to sufficiently 
strong homogeneous electric or magnetic fields. 

3. The averaging process in reciprocal space 

The actual position of each molecule does not occur 
in the expression for the mean intensity per molecule 
averaged over the whole assemblage. Hence  it is 
possible and convenient to regard this average over 
all the molecules as equivalent to the time-average 
of the intensity from a single molecule, situated at 
the origin and rotating uniformly about its molecular 
axis: during this motion the molecular axis itself 
rotates uniformly about the fibre axis, the time spent 
by it at an angle between a, a + d ~  to the fibre axis 
being proportional to the probability function dN(a). 

For any particular position of the molecule, the 
intensity in any given point 11 of reciprocal space is 
given by the value of G(~) at this point in reciprocal 
space. The intensity function G(TI) orientates itself in 
reciprocal space as though it were firmly attached to 
the molecule; hence as the molecule moves through 
the averaging positions in physical space, the function 
G(ll) moves similarly in reciprocal space and the time 
average of the values of G(Ti) at the point I] is the 
average intensity for the reflexion represented by that  
point. The determination of these averages in reci- 
procal space constitutes the core of the problem. 

I t  is convenient to use similarly orientated co- 
ordinate systems in physical and reciprocal space 
respectively, e.g. (r 1, 01, ~1) and (rx*, 0x*, ~1") such that  
the directions 01 = 0 and 0*----0 are parallel, and 
the planes T1 = 0 and ~* = 0 also. 

4. The general solution 

The intensity function G(~) of the molecule, referred 
to the reciprocal-space co-ordinate system fixed in the 
molecule, may be expanded as 

o o  + n  

Z m , m Gn (r2)Pn (cos 0") exp [imqD*] 
(3) 

3 5 *  
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where, in this development, 

, 2 n ~ - I  (n--m)! 
G,~(r2) = 4re "(n~-m) ~ v .  x 

~2 )P~ (cos 0") exp [--im9%* ] sin O~dO*2dg~* 

and P~ (cos 0") is an associated Legendre polynomial 
(Hobson, 1931, p. 146). G(vl) has a centre of symmetry, 
being the Fourier transform of the Patterson fold of 
the molecule, so that  in this particular problem 
G ~ ----0for a l ln ,  m. 2 n + l  

(i) If the molecular plane makes an angle ?i with 
the plane ~l ---- 0, G(vl) may be expressed as a function 
of r*, 0i*, ~i* by making in (3) the substitutions 

r 2 ---~r 1 , 
02 ----0i , 

~*=~*--r~- 
Since the molecule rotates uniformly about its axis, 
the time average of G(tl) for this motion is obtained 
by integrating with respect to d~q, and dividing by 
2:~. This integration leaves only the terms with 
m-----0 standing, so 

CO 

0(~) = Z  G°(~*)P. (cos 0"). 
n = 0  

(ii) The uniform motion of the molecule about the 
fibre axis with the molecular axis inclined at an angle 

t o  it is considered next by redeveloping G(*I) in 
terms of the fibre axis (reciprocal space) co-ordinate 
system (r*, 0", ~*). This is achieved by noting that  
if (0i*, ~i*) and (0", ~*) are the angular co-ordinates 
in the two systems of co-ordinates of the same general 
direction in reciprocal space and (~,/~) the direction 
of the molecular axis, then 

cos 0~----cos ~ cos 0*-i-sin ¢¢ sin 0". cos (~*--fl) (4) 

from the spherical triangle formed by the fibre axis, 
the molecular axis and the general direction (see 

Fibre 

(a,p) a / ~ ' ~  o" 10; ~') 

Mo,~ecu,~, l IGene;2 ~'q2) 
axis ~ direction 

Fig. 1. 

Fig. 1). Hence, by the addition theorem for Legendre 
polynomials, 

P~ (cos 0") = 
n (n--m)[ 

(n+m)~T. P~ (cos 0") P~ (cos ~) exp [im((p*--fl)] , 
(5) 

and the redevelopment of G(TI) is immediate. The 
required time average is now obtained by an inte- 
gration with respect to d/~ similar to the previous 
one. The terms for which m ~ 0 again disappear, 
giving 

CO 

G--(T]) -----~" G°(r*)P, (cos a) P ,  (cos 0") ,  
n = 0  

which is symmetrical about the fibre axis and depends 
o n  o¢. 

(iii) The final averaging, to allow for the various 
values of a, is obtained by integrating G(vl) with 
respect to d~, using D(~)sin ~ as a weight function 
in its expanded form (2). Thus 

CO 

I(r*, 0") -----~ I ~(r*, 0"; a)D,.P, (cos a) sin ~ d~ .  
~ = 0  

Now, since 

(cos ~x) P~ (cos ~x) sin o~do~ -- 2n-t--------1 d~,~, 

the final result for the average intensity per molecule 
is 

CO 2 
I(r*, 0") = ~  4 n +  1" D~'fi/~n(r*)P2'~ (cos 0") ,  (6) 

n = 0  

since G°~.n+i = 0 for all n. This expression must be 
multiplied by the number of scattering molecules, but 
this does not alter its form. 

5.  D i s c u s s i o n  o f  t h e  r e s u l t  

I t  is worth noting that  of all the coefficients G~ of 
the expansion (3) of the molecular intensity function, 
only those with m : 0 and n even are required in 
the final result. If the Patterson-folded density (1) 
of the molecule is expanded in spherical harmonics 
with coefficients H~n(r), then, since G(~) is the Fourier 
transform of P(x), 

CO 

r*½G~n(r*) --  2:~(--)n I r~H'~n(r)J2"+½(2rr*)dr' (7) 
0 

where Jn denotes the Bessel function. This result is 
obtained by the evaluation of the Fourier transform 
with the aid of the expansions (5) and (8)/[ This 
means that  the diffraction pattern from the assemblage 
of molecules is affected only by those terms in the 
expansion of the folded density which have cylindrical 
symmetry about the molecular axis, and, therefore, 
in this problem the molecular Patterson-folded den- 
sity can be replaced by the 'smeared out' density 
obtained by rotating the folded density uniformly 
about the molecular axis. Conversely, the most general 

The derivation of (7) and other relevant theorems is 
discussed in detail by  Stratton (1941, chap. 7). Hobson (1893) 
gives (7) in a more general form. 
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result may be obtained by considering a flat molecule 
whose plane contains the molecular axis. 

Given an experimental determination of the re- 
sultant intensity function I(B), it can be expanded in 
spherical harmonics with coefficients 

2 
I°n(r*) -- 4n ~- 1 Dg.n. G°n(r*) . 

Thus, if the probability function D(~), equation (2), 
is known or assumed, the averaged Patterson-folded 
density G(TI) can be determined; or alternatively D(~) 
can be found if the molecular intensity function G(~) 
is known (strictly only G(B) is required). 

6. Linear grat ings  

In this section and the next the general method is 
applied to the cases of certain simple molecules, con- 
sidered to consist of 'point '  atoms of known scattering 
power. 

By a linear grating is meant  a molecule of N similar 
atoms, lying equally spaced along a straight line so 
tha t  the atoms are located at the points x0~/ca , 
where k ---- 0, 1, 2 . . . .  , N- -1 .  For such a structure 

N--1  

F(rl) : m exp [--2~i(~.x0)]~Y' exp [--2~ik(vl. a)] , 
k=O 

where m is the atomic structure factor for the atoms 
of the grating. Hence 

2~--1 

G(Ti) : m m * N + 2 m m * ~  (N--k) cos (kz* cos 01..) , 
k = l  

where z* ---- 2~ar*, and 0* is the angle between the 
molecular axis and the vector 1"1----(r*, 0", ~*) of 
reciprocal space. G(TI) is, of course, the Fourier 
transform of the Patterson-fold of the grating. The 
parameters a, m, N give the dependence of G(vi) 
upon the kind and size of the grating, and its de- 
pendence upon the direction is given by the direction 
of a, i.e. by cos {}1". The first term in G(TI) is a constant 
background term which will be dropped out of the 
working to be reintroduced at the end. 

The averaging process follows a pat tern  similar to 
the general case, but  contracted because the cylindrical 
symmetry  of the grating gives Gffl ) -----G(TI) im- 
mediately. Using the expansion (Watson, 1948, p. 368) 

c o s  (z c o s  0)  - -  
oo 

(~/2z)½ ~_," (--)~(4n+ 1)J2n+½(z)P2~ (cos 0), 
n = 0  

G(vl) can be written as 
¢x~ N--1  

= {(--  )n(4n+ l)  
n=O k= l 

× (N--k)(z/2kz*)½J2n+½(kz*).P2n (cos 01")) , 

which can be regarded as an expansion of G(TI) in 
spherical harmonics with 

GOn+l(r *) : O ,  

G~2n(r* ) ----- 2mm*(--  )n(4n~ - 1) 

~V--1 

× 
k-~l 

Hence the final solution, on adding in the background 
term, is 

co X- -1  

I(r*, 0") ---- ram* N + 2 ~  ~ '  {(--)nD2n 
n = 0  k = l  

× (N--k)(kar*)-½J2n+½(2zkar*).Pgn (cos 0")) 1 . 

For the case of random orientations D(~) ---- ½ for 
all a, and 

~-1 sin 2:~a]cr*] 
I(r*, 0") -~ mm* N ~ 2  Z (N- -k )  , 

2~kar* J ;-:=1 

using the trigonometrical form of J½. This is the same 
expression as tha t  found by Jones (1949, equation 
(1-4)) for this case. 

7. P lanar  molecu le  

Another example is a planar molecule whose molecular 
axis is perpendicular to the plane of the molecule. 
Since the molecule is considered to consist of point 
atoms its Patterson-folded density is not only a flat 
molecule but  consists of point atoms too. Each of 
these atoms will contribute to the intensity in a 
similar manner, so only one need be considered. Sup- 
pose, therefore, an atom of magnitude /~, of the 
Patterson-fold of the molecule, is situated at a distance 
d from the molecular axis. This is an adequate de- 
scription of the position of the atom, but for con- 
venience in the deduction, the complete description 
of the position is taken as d ---- (d, ½7e, qh) referred to 
the (rl, 01, ~1) system of co-ordinates. 

The intensity due to this atom is 

G(~l) ----- # exp [--2~i(Tid)] 

= / ~  exp [--iz* cos e] , 

where z* ~ 2z~dr* and e is the angle between d and T l. 
On expansion (Watson, 1948, p. 368) this gives 

co 

G(TI) = / ~ ( z / 2 z * ) ½ ~  (2n+l)(--i)nJn+½ (z*)Pn (COS e).  
n=0 (8) 

The molecular axis, the vector of the atomic position 
d, and the reciprocal vector T I = (r*, 0", ~*) form a 
spherical triangle (Fig. 2) so tha t  

cos e = cos 0". cos ½~+sin 01. sin ½z. cos (~*--~1) , 
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A-~o. ,  - 
Fig. 2. 

which, using (5), gives 

0(11) ---- re. (~/2z*)½ 2n+  1 )(--i)nJn+i(z *) 
n ~ 0  m ~ - - n  . 

(n- -m)!  } 
× (n+m)-~v. P~  (cos ½~)P~ (cos 0")exp [im(~*--~vl)] • 

This is an expansion of G(vl) in spherical harmonics. 
Now 

P~n+l(0) = 0 ,  

P~,(O) = (--)".(2n)!/2~n(n!) ~ . 
Hence 

G°,+l(r *) : O, 

(4n + 1)(2n) !. (~/2z*)½ .J2n+½(z*) . 
G°'(r*) ---- t~" 22~. (n !)~ 

Therefore, the contribution this atom makes to the 
average intensity per molecule from the whole as- 
semblage is 

I~(r*,O*) = 

2 9 Dg~l~i(dir*)-½J2n+½(2z~dir*)P2n (cos 0") . 
n = 0  

Here subscripts i have been added to all quantities 
referring to the particular atom considered. The 
average intensity per molecule is therefore 

I(r*,O*)--  ~ I i ( r * , O * ) ,  
i 

where the summation is taken over all atoms in the 
Patterson fold of the real molecule. 

Two things about this summation should be noted. 
First, since di always occurs together with r* as the 
product r 'd ,  a change in the value of d leaves the 
form of I(r*, 0") unchanged and the effect can be 
regarded as a change in the scale of r*. A similar 
remark is true of the previous example. Secondly, 
the contribution of the large atom at the origin of the 
Patterson fold is large, positive and constant, and 
will therefore prevent I(r*,O*) from becoming 
negative, as it would do otherwise. 

The method of this paper is to express G(rl) etc. 
as spherical harmonic expansions. This is the 
mathematical form most suited for averaging a 
function over various orientations about a fixed 
point. In this paper the function so averaged is 
G(rl). This choice is dictated by the physics of the 
problem. The averaging process can be applied equally 
well to F(I1), the Fourier transform of the molecular 
density, to give a mean structure factor (Zachariasen, 
1945, p. 223) though in certain problems difficulties 
may arise from phase factors. 

The author is indebted to Prof. P. P. Ewald, who 
suggested this problem, for advice and encouragement 
and to The Queen's University of Belfast for the 
award of a Senior Studentship. 
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For a centro-symmetrical structure, the inequalities of of structure factors or to deduce relations among them. 
Harker & Kasper (1948)permit us to determine the signs One important inequality generally applicable to a centro- 


